Building Knowledge-Grounded AI Agents: RAG Integration with Microsoft AutoGen

Executive Summary: Retrieval-Augmented Generation (RAG) transforms multi-agent systems by grounding AI responses in factual, domain-specific knowledge. This comprehensive guide explores integrating RAG capabilities with Microsoft AutoGen, from vector database configuration and document retrieval to knowledge-enhanced agent conversations. After implementing RAG-powered agent systems for enterprise knowledge management, I’ve found that combining retrieval with multi-agent collaboration produces significantly more accurate and contextually relevant outputs than either approach alone. Organizations should leverage RAG-enhanced AutoGen for customer support automation, technical documentation assistance, research synthesis, and any application requiring accurate, source-backed responses.

RAG Architecture for Multi-Agent Systems

Traditional LLM agents rely solely on their training data, leading to hallucinations and outdated information. RAG addresses these limitations by retrieving relevant documents before generation, providing agents with factual context for their responses. In multi-agent systems, RAG enables specialized knowledge agents that access domain-specific document collections, enhancing the entire team’s capabilities.

AutoGen’s RetrieveAssistantAgent and RetrieveUserProxyAgent provide built-in RAG functionality. These agents automatically query vector databases, retrieve relevant documents, and incorporate retrieved context into conversations. Configure retrieval parameters including chunk size, overlap, similarity threshold, and maximum retrieved documents based on your knowledge base characteristics.

Vector database selection impacts retrieval quality and performance. ChromaDB offers simple local deployment for development. Pinecone provides managed infrastructure with excellent scaling. Weaviate combines vector search with structured filtering. Qdrant offers high-performance open-source options. Choose based on scale requirements, deployment preferences, and feature needs like hybrid search or metadata filtering.

Document Processing and Embedding Pipeline

Effective RAG requires thoughtful document processing. Chunk documents into semantically meaningful segments—too small loses context, too large dilutes relevance. Overlap between chunks preserves context across boundaries. For technical documentation, respect code block and section boundaries. For conversational content, maintain dialogue coherence within chunks.

Embedding model selection affects retrieval accuracy. OpenAI’s text-embedding-ada-002 provides strong general-purpose embeddings. Sentence transformers offer open-source alternatives with domain-specific fine-tuning options. Cohere’s embeddings excel at multilingual content. Match embedding dimensions to your vector database configuration and consider embedding model updates’ impact on existing indexes.

Metadata enrichment improves retrieval precision. Tag documents with source, date, category, and custom attributes. Enable filtered retrieval—retrieve only documents from specific sources or time ranges. Implement hybrid search combining semantic similarity with keyword matching for queries requiring exact term matches.

Python Implementation: RAG-Enhanced Agent System

Here’s a comprehensive implementation demonstrating RAG integration with AutoGen agents:

"""Microsoft AutoGen - RAG-Enhanced Multi-Agent System"""
import autogen
from autogen.agentchat.contrib.retrieve_assistant_agent import RetrieveAssistantAgent
from autogen.agentchat.contrib.retrieve_user_proxy_agent import RetrieveUserProxyAgent
from autogen import AssistantAgent, UserProxyAgent, GroupChat, GroupChatManager
import chromadb
from chromadb.config import Settings
from typing import Optional, Dict, Any, List, Callable
import os
import logging
from dataclasses import dataclass
from pathlib import Path
import hashlib

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)


@dataclass
class RAGConfig:
    """Configuration for RAG system."""
    model: str = "gpt-4"
    embedding_model: str = "text-embedding-ada-002"
    chunk_size: int = 1000
    chunk_overlap: int = 200
    retrieve_top_k: int = 5
    similarity_threshold: float = 0.7
    collection_name: str = "knowledge_base"
    persist_directory: str = "./chroma_db"


class DocumentProcessor:
    """Process documents for RAG indexing."""
    
    def __init__(self, config: RAGConfig):
        self.config = config
    
    def chunk_text(self, text: str, metadata: Dict[str, Any] = None) -> List[Dict[str, Any]]:
        """Split text into overlapping chunks."""
        chunks = []
        start = 0
        chunk_id = 0
        
        while start < len(text):
            end = start + self.config.chunk_size
            chunk_text = text[start:end]
            
            # Try to break at sentence boundary
            if end < len(text):
                last_period = chunk_text.rfind('.')
                last_newline = chunk_text.rfind('\n')
                break_point = max(last_period, last_newline)
                if break_point > self.config.chunk_size * 0.5:
                    chunk_text = chunk_text[:break_point + 1]
                    end = start + break_point + 1
            
            chunk_hash = hashlib.md5(chunk_text.encode()).hexdigest()[:8]
            
            chunk_data = {
                "text": chunk_text.strip(),
                "chunk_id": f"{metadata.get('doc_id', 'doc')}_{chunk_id}_{chunk_hash}",
                "metadata": {
                    **(metadata or {}),
                    "chunk_index": chunk_id,
                    "start_char": start,
                    "end_char": end,
                }
            }
            
            if chunk_text.strip():
                chunks.append(chunk_data)
            
            chunk_id += 1
            start = end - self.config.chunk_overlap
        
        return chunks
    
    def process_file(self, file_path: Path) -> List[Dict[str, Any]]:
        """Process a file into chunks."""
        with open(file_path, 'r', encoding='utf-8') as f:
            content = f.read()
        
        metadata = {
            "doc_id": file_path.stem,
            "source": str(file_path),
            "file_type": file_path.suffix,
        }
        
        return self.chunk_text(content, metadata)
    
    def process_directory(self, dir_path: Path, extensions: List[str] = None) -> List[Dict[str, Any]]:
        """Process all files in a directory."""
        extensions = extensions or ['.txt', '.md', '.py', '.json']
        all_chunks = []
        
        for file_path in dir_path.rglob('*'):
            if file_path.suffix in extensions:
                chunks = self.process_file(file_path)
                all_chunks.extend(chunks)
                logger.info(f"Processed {file_path}: {len(chunks)} chunks")
        
        return all_chunks


class VectorStore:
    """Manage vector database for RAG."""
    
    def __init__(self, config: RAGConfig):
        self.config = config
        self.client = chromadb.Client(Settings(
            chroma_db_impl="duckdb+parquet",
            persist_directory=config.persist_directory,
            anonymized_telemetry=False
        ))
        self.collection = self.client.get_or_create_collection(
            name=config.collection_name,
            metadata={"hnsw:space": "cosine"}
        )
    
    def add_documents(self, chunks: List[Dict[str, Any]]) -> None:
        """Add document chunks to vector store."""
        if not chunks:
            return
        
        ids = [chunk["chunk_id"] for chunk in chunks]
        documents = [chunk["text"] for chunk in chunks]
        metadatas = [chunk["metadata"] for chunk in chunks]
        
        self.collection.add(
            ids=ids,
            documents=documents,
            metadatas=metadatas
        )
        
        logger.info(f"Added {len(chunks)} chunks to vector store")
    
    def query(
        self,
        query_text: str,
        n_results: int = None,
        where: Dict[str, Any] = None
    ) -> List[Dict[str, Any]]:
        """Query vector store for relevant documents."""
        n_results = n_results or self.config.retrieve_top_k
        
        results = self.collection.query(
            query_texts=[query_text],
            n_results=n_results,
            where=where
        )
        
        documents = []
        for i, doc in enumerate(results['documents'][0]):
            documents.append({
                "text": doc,
                "metadata": results['metadatas'][0][i] if results['metadatas'] else {},
                "distance": results['distances'][0][i] if results['distances'] else None,
                "id": results['ids'][0][i] if results['ids'] else None
            })
        
        return documents
    
    def delete_collection(self) -> None:
        """Delete the collection."""
        self.client.delete_collection(self.config.collection_name)


class RAGAgentSystem:
    """RAG-enhanced multi-agent system."""
    
    def __init__(self, config: RAGConfig):
        self.config = config
        self.processor = DocumentProcessor(config)
        self.vector_store = VectorStore(config)
        self.agents: Dict[str, autogen.Agent] = {}
        
        self.llm_config = {
            "config_list": [
                {"model": config.model, "api_key": os.getenv("OPENAI_API_KEY")}
            ],
            "temperature": 0.3,
        }
    
    def index_documents(self, source_path: str, extensions: List[str] = None) -> int:
        """Index documents from a path."""
        path = Path(source_path)
        
        if path.is_file():
            chunks = self.processor.process_file(path)
        else:
            chunks = self.processor.process_directory(path, extensions)
        
        self.vector_store.add_documents(chunks)
        return len(chunks)
    
    def create_rag_assistant(
        self,
        name: str,
        system_message: str,
        retrieve_config: Dict[str, Any] = None
    ) -> RetrieveAssistantAgent:
        """Create a RAG-enabled assistant agent."""
        
        default_retrieve_config = {
            "task": "qa",
            "docs_path": None,
            "chunk_token_size": self.config.chunk_size,
            "model": self.config.model,
            "collection_name": self.config.collection_name,
            "get_or_create": True,
        }
        
        if retrieve_config:
            default_retrieve_config.update(retrieve_config)
        
        agent = RetrieveAssistantAgent(
            name=name,
            system_message=system_message,
            llm_config=self.llm_config,
        )
        
        self.agents[name] = agent
        return agent
    
    def create_rag_user_proxy(
        self,
        name: str = "rag_proxy",
        retrieve_config: Dict[str, Any] = None
    ) -> RetrieveUserProxyAgent:
        """Create a RAG-enabled user proxy agent."""
        
        default_retrieve_config = {
            "task": "qa",
            "chunk_token_size": self.config.chunk_size,
            "model": self.config.model,
            "collection_name": self.config.collection_name,
            "get_or_create": True,
            "customized_prompt": None,
        }
        
        if retrieve_config:
            default_retrieve_config.update(retrieve_config)
        
        agent = RetrieveUserProxyAgent(
            name=name,
            human_input_mode="NEVER",
            max_consecutive_auto_reply=10,
            retrieve_config=default_retrieve_config,
            is_termination_msg=lambda x: "TERMINATE" in x.get("content", ""),
        )
        
        self.agents[name] = agent
        return agent
    
    def create_knowledge_expert(self, domain: str) -> AssistantAgent:
        """Create a domain knowledge expert agent."""
        
        expert = AssistantAgent(
            name=f"{domain}_expert",
            system_message=f"""You are an expert in {domain} with deep knowledge of the subject matter.
            
            Your responsibilities:
            1. Answer questions accurately based on provided context
            2. Cite sources when making claims
            3. Acknowledge when information is not available
            4. Provide comprehensive but focused responses
            5. Suggest related topics for further exploration
            
            When answering:
            - Base responses on the retrieved context
            - Clearly distinguish between retrieved facts and general knowledge
            - If context is insufficient, say so explicitly
            - Provide actionable insights when possible
            
            When your response is complete, say TERMINATE.""",
            llm_config=self.llm_config,
        )
        
        self.agents[f"{domain}_expert"] = expert
        return expert
    
    def create_fact_checker(self) -> AssistantAgent:
        """Create a fact-checking agent."""
        
        checker = AssistantAgent(
            name="fact_checker",
            system_message="""You are a rigorous fact-checker responsible for verifying claims.
            
            Your responsibilities:
            1. Verify claims against provided source documents
            2. Identify unsupported or contradicted statements
            3. Flag potential hallucinations or fabrications
            4. Ensure citations are accurate
            5. Rate confidence level of verified facts
            
            For each claim:
            - Check if it's supported by retrieved documents
            - Note the source document if supported
            - Mark as "UNVERIFIED" if no supporting evidence
            - Mark as "CONTRADICTED" if evidence conflicts
            
            Provide a verification summary at the end.""",
            llm_config=self.llm_config,
        )
        
        self.agents["fact_checker"] = checker
        return checker
    
    def create_research_team(self) -> tuple[GroupChat, GroupChatManager]:
        """Create a RAG-enhanced research team."""
        
        rag_proxy = self.create_rag_user_proxy("researcher")
        expert = self.create_knowledge_expert("technical")
        fact_checker = self.create_fact_checker()
        
        synthesizer = AssistantAgent(
            name="synthesizer",
            system_message="""You synthesize information from multiple sources into coherent responses.
            
            Your responsibilities:
            1. Combine insights from different experts
            2. Resolve conflicting information
            3. Structure responses clearly
            4. Highlight key findings
            5. Provide actionable conclusions
            
            Create well-organized summaries that address the original question comprehensively.""",
            llm_config=self.llm_config,
        )
        self.agents["synthesizer"] = synthesizer
        
        user = UserProxyAgent(
            name="user",
            human_input_mode="NEVER",
            max_consecutive_auto_reply=0,
        )
        
        agents = [user, rag_proxy, expert, fact_checker, synthesizer]
        
        group_chat = GroupChat(
            agents=agents,
            messages=[],
            max_round=20,
            speaker_selection_method="auto",
        )
        
        manager = GroupChatManager(
            groupchat=group_chat,
            llm_config=self.llm_config,
        )
        
        return group_chat, manager
    
    def query_with_context(
        self,
        question: str,
        filter_metadata: Dict[str, Any] = None
    ) -> Dict[str, Any]:
        """Query the knowledge base and get an answer with context."""
        
        # Retrieve relevant documents
        documents = self.vector_store.query(
            query_text=question,
            where=filter_metadata
        )
        
        # Format context
        context = "\n\n".join([
            f"[Source: {doc['metadata'].get('source', 'Unknown')}]\n{doc['text']}"
            for doc in documents
        ])
        
        # Create simple Q&A agents
        assistant = AssistantAgent(
            name="qa_assistant",
            system_message=f"""Answer questions based on the provided context.
            
            Context:
            {context}
            
            Instructions:
            - Answer based only on the provided context
            - Cite sources when possible
            - Say "I don't have enough information" if context is insufficient
            - Be concise but comprehensive
            
            When done, say TERMINATE.""",
            llm_config=self.llm_config,
        )
        
        user = UserProxyAgent(
            name="user",
            human_input_mode="NEVER",
            max_consecutive_auto_reply=3,
            is_termination_msg=lambda x: "TERMINATE" in x.get("content", ""),
        )
        
        result = user.initiate_chat(assistant, message=question)
        
        return {
            "question": question,
            "answer": result.chat_history[-1]["content"] if result.chat_history else "",
            "sources": documents,
            "chat_history": result.chat_history,
        }


# ==================== Example Usage ====================

def example_document_qa():
    """Example: Document-based Q&A system."""
    config = RAGConfig(
        model="gpt-4",
        chunk_size=800,
        chunk_overlap=100,
        retrieve_top_k=5
    )
    
    system = RAGAgentSystem(config)
    
    # Index sample documents
    sample_docs = """
    # Python Best Practices Guide
    
    ## Code Style
    Follow PEP 8 guidelines for Python code style. Use meaningful variable names
    and keep functions focused on single responsibilities.
    
    ## Error Handling
    Always use specific exception types rather than bare except clauses.
    Log errors with appropriate context for debugging.
    
    ## Testing
    Write unit tests for all public functions. Aim for at least 80% code coverage.
    Use pytest as the testing framework.
    """
    
    # Save and index
    doc_path = Path("./sample_docs")
    doc_path.mkdir(exist_ok=True)
    (doc_path / "python_guide.md").write_text(sample_docs)
    
    num_chunks = system.index_documents(str(doc_path))
    print(f"Indexed {num_chunks} chunks")
    
    # Query
    result = system.query_with_context("What are the Python testing best practices?")
    print(f"Answer: {result['answer']}")
    
    return result


if __name__ == "__main__":
    print("Running RAG example...")
    result = example_document_qa()

Advanced RAG Patterns

Hybrid retrieval combines semantic search with keyword matching for improved accuracy. Some queries require exact term matches that semantic search may miss. Implement BM25 or TF-IDF alongside vector search, then merge results using reciprocal rank fusion or learned re-ranking. This approach handles both conceptual queries and specific term lookups effectively.

Query expansion improves retrieval by generating multiple query variations. Use an LLM to rephrase the original query, generate related questions, or extract key concepts. Retrieve documents for each variation and deduplicate results. This technique captures relevant documents that might be missed by single-query retrieval.

Contextual compression reduces noise in retrieved documents. Long documents may contain irrelevant sections that dilute the useful context. Implement a compression step that extracts only the portions relevant to the query. This improves response quality and reduces token usage in the generation step.

AutoGen RAG Architecture - showing document processing, vector storage, retrieval, and agent integration
AutoGen RAG Architecture – Illustrating document processing pipeline, vector database integration, retrieval-augmented agents, and fact-checking workflows.

Key Takeaways and Best Practices

RAG integration transforms AutoGen agents from general-purpose assistants into domain experts grounded in factual knowledge. Design document processing pipelines that preserve semantic coherence. Choose vector databases based on scale and feature requirements. Implement fact-checking agents to verify retrieved information accuracy.

The Python examples provided here establish patterns for production-ready RAG systems. Start with simple retrieval-augmented Q&A, then scale to multi-agent research teams with specialized knowledge domains. In the next article, we’ll explore production deployment strategies for AutoGen systems including scaling, monitoring, and operational best practices.


Discover more from Code, Cloud & Context

Subscribe to get the latest posts sent to your email.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.