Deploying Multi-Agent AI Systems to Production: Scaling AutoGen with Kubernetes

πŸ“– Part 5 of 6 | Microsoft AutoGen: Building Multi-Agent AI Systems

With RAG-enhanced agents from Part 4, we now deploy multi-agent systems to production using Kubernetes.

ℹ️ INFO
Single-agent systems are straightforward to deploy. Multi-agent systems introduce state management, distributed communication, and complex error handling challenges.

1. The Multi-Agent Scaling Challenge

Single-agent systems are straightforward to deploy. Multi-agent systems introduce complexity:

  • State management: Agent conversations span multiple requests
  • Communication patterns: Agents need reliable pub/sub messaging
  • Resource allocation: Different agents have different compute needs
  • Error handling: One agent failure shouldn’t crash the entire system
  • Monitoring: Debugging distributed agent conversations is hard
flowchart TB
    subgraph K8s[Kubernetes Cluster]
        ING[Ingress] --> API[API Gateway]
        API --> ORCH[Orchestrator]
        ORCH --> AG1[Agent Pod 1]
        ORCH --> AG2[Agent Pod 2]
        ORCH --> AG3[Agent Pod 3]
        AG1 & AG2 & AG3 --> REDIS[(Redis)]
        AG1 & AG2 & AG3 --> KAFKA[(Kafka)]
    end
    PROM[Prometheus] --> AG1 & AG2 & AG3
    style ORCH fill:#667eea,color:white
    style REDIS fill:#ed8936,color:white

Figure 1: Multi-Agent Kubernetes Architecture

2. Kubernetes Architecture

A production multi-agent architecture requires several key components working together:

ComponentPurposeTechnology
API GatewayRequest routing, rate limiting, authKong, Ambassador, NGINX
OrchestratorAgent coordination, task distributionCustom Python service
State StoreConversation persistence, checkpointsRedis Cluster
Message QueueAsync agent communicationKafka, RabbitMQ
MonitoringMetrics, tracing, alertingPrometheus + Grafana
⚠️ WARNING
State management is critical. Use Redis or distributed cache for conversation stateβ€”agents on different pods must share context.

3. Kubernetes Deployment Configuration

# autogen-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: autogen-orchestrator
  labels:
    app: autogen
    component: orchestrator
spec:
  replicas: 3
  selector:
    matchLabels:
      app: autogen
      component: orchestrator
  template:
    metadata:
      labels:
        app: autogen
        component: orchestrator
    spec:
      containers:
      - name: orchestrator
        image: autogen-orchestrator:v1.0
        ports:
        - containerPort: 8080
        resources:
          requests:
            memory: "1Gi"
            cpu: "500m"
          limits:
            memory: "2Gi"
            cpu: "1000m"
        env:
        - name: REDIS_URL
          valueFrom:
            secretKeyRef:
              name: redis-secret
              key: url
        - name: OPENAI_API_KEY
          valueFrom:
            secretKeyRef:
              name: openai-secret
              key: api-key
        livenessProbe:
          httpGet:
            path: /health
            port: 8080
          initialDelaySeconds: 30
          periodSeconds: 10
        readinessProbe:
          httpGet:
            path: /ready
            port: 8080
          initialDelaySeconds: 5
          periodSeconds: 5
---
# Horizontal Pod Autoscaler
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
  name: autogen-hpa
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: autogen-orchestrator
  minReplicas: 3
  maxReplicas: 20
  metrics:
  - type: Resource
    resource:
      name: cpu
      target:
        type: Utilization
        averageUtilization: 70
  - type: Resource
    resource:
      name: memory
      target:
        type: Utilization
        averageUtilization: 80

4. State Management with Redis

"""Redis-based state management for AutoGen."""
import redis
import json
from typing import Dict, Any, Optional
from dataclasses import dataclass, asdict
from datetime import datetime, timedelta

@dataclass
class ConversationState:
    conversation_id: str
    agents: list
    messages: list
    status: str = "active"
    created_at: str = None
    updated_at: str = None
    checkpoint_id: Optional[str] = None
    
    def __post_init__(self):
        now = datetime.utcnow().isoformat()
        if not self.created_at:
            self.created_at = now
        self.updated_at = now

class RedisStateManager:
    """Distributed state management for multi-agent systems."""
    
    def __init__(self, redis_url: str, ttl_hours: int = 24):
        self.redis = redis.from_url(redis_url)
        self.ttl = timedelta(hours=ttl_hours)
    
    def save_state(self, state: ConversationState) -> None:
        """Save conversation state."""
        key = f"conversation:{state.conversation_id}"
        state.updated_at = datetime.utcnow().isoformat()
        self.redis.setex(
            key,
            self.ttl,
            json.dumps(asdict(state))
        )
    
    def get_state(self, conversation_id: str) -> Optional[ConversationState]:
        """Retrieve conversation state."""
        key = f"conversation:{conversation_id}"
        data = self.redis.get(key)
        if data:
            return ConversationState(**json.loads(data))
        return None
    
    def create_checkpoint(self, conversation_id: str) -> str:
        """Create a checkpoint for recovery."""
        state = self.get_state(conversation_id)
        if not state:
            raise ValueError(f"Conversation {conversation_id} not found")
        
        checkpoint_id = f"{conversation_id}:{datetime.utcnow().timestamp()}"
        checkpoint_key = f"checkpoint:{checkpoint_id}"
        
        self.redis.setex(
            checkpoint_key,
            timedelta(hours=72),  # Longer TTL for checkpoints
            json.dumps(asdict(state))
        )
        
        state.checkpoint_id = checkpoint_id
        self.save_state(state)
        
        return checkpoint_id
    
    def restore_checkpoint(self, checkpoint_id: str) -> ConversationState:
        """Restore from checkpoint."""
        key = f"checkpoint:{checkpoint_id}"
        data = self.redis.get(key)
        if not data:
            raise ValueError(f"Checkpoint {checkpoint_id} not found")
        
        state = ConversationState(**json.loads(data))
        state.status = "restored"
        self.save_state(state)
        
        return state
    
    def add_message(self, conversation_id: str, message: Dict[str, Any]) -> None:
        """Add message to conversation."""
        state = self.get_state(conversation_id)
        if state:
            state.messages.append(message)
            self.save_state(state)
βœ… BEST PRACTICE
Set resource limits to prevent a single agent from consuming cluster resources. Monitor memory usage as LLM responses can be large.

5. Monitoring and Observability

Effective monitoring is critical for production multi-agent systems:

  • Prometheus metrics: Agent latency, token usage, error rates
  • Distributed tracing: Track conversations across agents with OpenTelemetry
  • Log aggregation: Centralize logs with conversation correlation IDs
  • Alerting: Token budget alerts, high latency, error thresholds

Conclusion

Deploying multi-agent systems to production requires careful attention to state management, scaling, and observability. Kubernetes provides the orchestration layer, but the real challenges are in managing distributed agent conversations and ensuring reliability.

πŸ“Œ Key Takeaways

  • Redis for distributed state management across pods
  • Kafka/RabbitMQ for async agent communication
  • HPA for automatic scaling based on CPU/memory
  • Checkpointing enables conversation recovery
  • Prometheus + Grafana for comprehensive observability

πŸ”œ Coming Up: Part 6: Advanced Patterns

We’ll explore hierarchical team structures, workflow state machines, and enterprise system integration.


Discover more from C4: Container, Code, Cloud & Context

Subscribe to get the latest posts sent to your email.

Leave a comment

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.