Serverless AI Architecture: Building Scalable LLM Applications

Three years ago, I built my first serverless LLM application. It failed spectacularly. Cold starts made responses take 15 seconds. Timeouts killed long-running requests. Costs spiraled out of control. After architecting 30+ serverless AI systems, I’ve learned what works. Here’s the complete guide to building scalable serverless LLM applications. Figure 1: Serverless AI Architecture Overview […]

Read more →

Deploying LLM Applications on Cloud Run: A Complete Guide

Last year, I deployed our first LLM application to Cloud Run. What should have taken hours took three days. Cold starts killed our latency. Memory limits caused crashes. Timeouts broke long-running requests. After deploying 20+ LLM applications to Cloud Run, I’ve learned what works and what doesn’t. Here’s the complete guide. Figure 1: Cloud Run […]

Read more →

Cost Optimization for AI Workloads: Tracking and Reducing LLM Costs

Last quarter, our LLM costs hit $12,000. In a single month. We had no idea where the money was going. No tracking, no budgets, no alerts. That’s when I realized: cost optimization isn’t optional for AI workloads—it’s survival. Here’s how we cut costs by 65% without sacrificing quality. Figure 1: Cost Optimization Architecture The $12,000 […]

Read more →

Prompt Performance Monitoring: Tracking LLM Response Quality

Three weeks after launching our AI customer support system, we noticed something strange. Response quality was degrading—slowly, almost imperceptibly. Users weren’t complaining yet, but satisfaction scores were dropping. The problem? We had no way to measure prompt performance. We were optimizing blind. That’s when I built a comprehensive prompt performance monitoring system. Figure 1: Prompt […]

Read more →

LLM Observability: Monitoring AI Applications in Production

Last month, our LLM application started giving wrong answers. Not occasionally—systematically. The problem? We had no visibility. No logs, no metrics, no way to understand what was happening. That incident cost us a major client and taught me that observability isn’t optional for LLM applications—it’s survival. ” alt=”LLM Observability Architecture” style=”max-width: 100%; height: auto; border-radius: […]

Read more →