Agentic AI in Enterprise: Why Infrastructure Readiness Matters More Than Model Capability

After 20+ years in enterprise architecture, I’ve seen that infrastructure readiness matters more than model capability for agentic AI deployment. Gartner predicts 40% of projects will be cancelled by 2027 due to infrastructure gaps, not AI failures.

Read more →

Production Model Deployment Patterns: From REST APIs to Kubernetes Orchestration in Python

After deploying hundreds of ML models to production across startups and enterprises, I’ve learned that model deployment is where most AI projects fail. Not because the models don’t work—but because teams underestimate the engineering complexity of serving predictions reliably at scale. This article shares production-tested deployment patterns from REST APIs to Kubernetes orchestration. 1. The […]

Read more →

Data Pipelines for LLM Training: Building Production ETL Systems

Building production ETL pipelines for LLM training is complex. After building pipelines processing 100TB+ of data, I’ve learned what works. Here’s the complete guide to building production data pipelines for LLM training. Figure 1: LLM Training Data Pipeline Architecture Why Production ETL Matters for LLM Training LLM training requires massive amounts of clean, processed data: […]

Read more →

Running LLMs on Kubernetes: Production Deployment Guide

Deploying LLMs on Kubernetes requires careful planning. After deploying 25+ LLM models on Kubernetes, I’ve learned what works. Here’s the complete guide to running LLMs on Kubernetes in production. Figure 1: Kubernetes LLM Architecture Why Kubernetes for LLMs Kubernetes offers significant advantages for LLM deployment: Scalability: Auto-scale based on demand Resource management: Efficient GPU and […]

Read more →

Deploying LLM Applications on Cloud Run: A Complete Guide

Last year, I deployed our first LLM application to Cloud Run. What should have taken hours took three days. Cold starts killed our latency. Memory limits caused crashes. Timeouts broke long-running requests. After deploying 20+ LLM applications to Cloud Run, I’ve learned what works and what doesn’t. Here’s the complete guide. Figure 1: Cloud Run […]

Read more →

LLM Observability: Monitoring AI Applications in Production

Last month, our LLM application started giving wrong answers. Not occasionally—systematically. The problem? We had no visibility. No logs, no metrics, no way to understand what was happening. That incident cost us a major client and taught me that observability isn’t optional for LLM applications—it’s survival. ” alt=”LLM Observability Architecture” style=”max-width: 100%; height: auto; border-radius: […]

Read more →