Production Model Deployment Patterns: From REST APIs to Kubernetes Orchestration in Python

After deploying hundreds of ML models to production across startups and enterprises, I’ve learned that model deployment is where most AI projects fail. Not because the models don’t work—but because teams underestimate the engineering complexity of serving predictions reliably at scale. This article shares production-tested deployment patterns from REST APIs to Kubernetes orchestration. 1. The […]

Read more →

ML.NET for Custom AI Models: When to Use ML.NET vs Cloud APIs

Six months ago, I faced a critical decision: build a custom ML model with ML.NET or use cloud APIs. The project required real-time fraud detection with zero latency tolerance. Cloud APIs were too slow. ML.NET was the answer. But when should you use ML.NET vs cloud APIs? After building 15+ production ML systems, here’s what […]

Read more →