Production RAG Architecture: Building Scalable Vector Search Systems

Three months into production, our RAG system started failing at 2AM. Not gracefully—complete outages. The problem wasn’t the models or the embeddings. It was the architecture. After rebuilding it twice, here’s what I learned about building RAG systems that actually work in production. Figure 1: Production RAG Architecture Overview The Night Everything Broke It was […]

Read more →

Running LLMs on Kubernetes: Production Deployment Guide

Deploying LLMs on Kubernetes requires careful planning. After deploying 25+ LLM models on Kubernetes, I’ve learned what works. Here’s the complete guide to running LLMs on Kubernetes in production. Figure 1: Kubernetes LLM Architecture Why Kubernetes for LLMs Kubernetes offers significant advantages for LLM deployment: Scalability: Auto-scale based on demand Resource management: Efficient GPU and […]

Read more →

Edge AI with ONNX Runtime: Running Models On-Device

Last year, I deployed an AI model to a mobile device. The first attempt failed—the model was too large, inference was too slow, and battery drain was unacceptable. After optimizing 15+ models for edge deployment using ONNX Runtime, I’ve learned what works. Here’s the complete guide to running AI models on-device with ONNX Runtime. Figure […]

Read more →

Vector Database Comparison: Pinecone vs Weaviate vs Qdrant vs Chroma – Choosing the Right One for Your RAG Application

Last March, a 3AM alert changed everything. Our Pinecone bill had tripled overnight, and I spent the next three months migrating between vector databases, learning hard lessons about what actually matters. Let me share what I discovered—and what I wish someone had told me. Figure 1: Comprehensive comparison of vector database options The Night Everything […]

Read more →

Serverless AI Architecture: Building Scalable LLM Applications

Three years ago, I built my first serverless LLM application. It failed spectacularly. Cold starts made responses take 15 seconds. Timeouts killed long-running requests. Costs spiraled out of control. After architecting 30+ serverless AI systems, I’ve learned what works. Here’s the complete guide to building scalable serverless LLM applications. Figure 1: Serverless AI Architecture Overview […]

Read more →

Deploying LLM Applications on Cloud Run: A Complete Guide

Last year, I deployed our first LLM application to Cloud Run. What should have taken hours took three days. Cold starts killed our latency. Memory limits caused crashes. Timeouts broke long-running requests. After deploying 20+ LLM applications to Cloud Run, I’ve learned what works and what doesn’t. Here’s the complete guide. Figure 1: Cloud Run […]

Read more →