Last quarter, our LLM costs hit $12,000. In a single month. We had no idea where the money was going. No tracking, no budgets, no alerts. That’s when I realized: cost optimization isn’t optional for AI workloads—it’s survival. Here’s how we cut costs by 65% without sacrificing quality. Figure 1: Cost Optimization Architecture The $12,000 […]
Read more →Category: AI/ML
Prompt Performance Monitoring: Tracking LLM Response Quality
Three weeks after launching our AI customer support system, we noticed something strange. Response quality was degrading—slowly, almost imperceptibly. Users weren’t complaining yet, but satisfaction scores were dropping. The problem? We had no way to measure prompt performance. We were optimizing blind. That’s when I built a comprehensive prompt performance monitoring system. Figure 1: Prompt […]
Read more →LLM Observability: Monitoring AI Applications in Production
Last month, our LLM application started giving wrong answers. Not occasionally—systematically. The problem? We had no visibility. No logs, no metrics, no way to understand what was happening. That incident cost us a major client and taught me that observability isn’t optional for LLM applications—it’s survival. ” alt=”LLM Observability Architecture” style=”max-width: 100%; height: auto; border-radius: […]
Read more →Advanced RAG Patterns: Beyond Basic Retrieval
Six months ago, I thought RAG was simple: retrieve chunks, send to LLM, done. Then I built a system that needed to answer questions about 50,000 technical documents. Basic retrieval failed spectacularly. That’s when I discovered advanced RAG patterns—techniques that transform RAG from a prototype into a production system. ” alt=”Advanced RAG Patterns” style=”max-width: 100%; […]
Read more →Production RAG Architecture: Building Scalable Vector Search Systems
Three months into production, our RAG system started failing at 2AM. Not gracefully—complete outages. The problem wasn’t the models or the embeddings. It was the architecture. After rebuilding it twice, here’s what I learned about building RAG systems that actually work in production. Figure 1: Production RAG Architecture Overview The Night Everything Broke It was […]
Read more →Vector Database Comparison: Pinecone vs Weaviate vs Qdrant vs Chroma – Choosing the Right One for Your RAG Application
Last March, a 3AM alert changed everything. Our Pinecone bill had tripled overnight, and I spent the next three months migrating between vector databases, learning hard lessons about what actually matters. Let me share what I discovered—and what I wish someone had told me. Figure 1: Comprehensive comparison of vector database options The Night Everything […]
Read more →